7 research outputs found

    GraphX: Unifying Data-Parallel and Graph-Parallel Analytics

    Full text link
    From social networks to language modeling, the growing scale and importance of graph data has driven the development of numerous new graph-parallel systems (e.g., Pregel, GraphLab). By restricting the computation that can be expressed and introducing new techniques to partition and distribute the graph, these systems can efficiently execute iterative graph algorithms orders of magnitude faster than more general data-parallel systems. However, the same restrictions that enable the performance gains also make it difficult to express many of the important stages in a typical graph-analytics pipeline: constructing the graph, modifying its structure, or expressing computation that spans multiple graphs. As a consequence, existing graph analytics pipelines compose graph-parallel and data-parallel systems using external storage systems, leading to extensive data movement and complicated programming model. To address these challenges we introduce GraphX, a distributed graph computation framework that unifies graph-parallel and data-parallel computation. GraphX provides a small, core set of graph-parallel operators expressive enough to implement the Pregel and PowerGraph abstractions, yet simple enough to be cast in relational algebra. GraphX uses a collection of query optimization techniques such as automatic join rewrites to efficiently implement these graph-parallel operators. We evaluate GraphX on real-world graphs and workloads and demonstrate that GraphX achieves comparable performance as specialized graph computation systems, while outperforming them in end-to-end graph pipelines. Moreover, GraphX achieves a balance between expressiveness, performance, and ease of use

    Delta lake: high-performance ACID table storage over cloud object stores

    Get PDF
    Cloud object stores such as Amazon S3 are some of the largest and most cost-effective storage systems on the planet, making them an attractive target to store large data warehouses and data lakes. Unfortunately, their implementation as key-value stores makes it difficult to achieve ACID transactions and high performance: metadata operations such as listing objects are expensive, and consistency guarantees are limited. In this paper, we present Delta Lake, an open source ACID table storage layer over cloud object stores initially developed at Databricks. Delta Lake uses a transaction log that is compacted into Apache Parquet format to provide ACID properties, time travel, and significantly faster metadata operations for large tabular datasets (e.g., the ability to quickly search billions of table partitions for those relevant to a query). It also leverages this design to provide high-level features such as automatic data layout optimization, upserts, caching, and audit logs. Delta Lake tables can be accessed from Apache Spark, Hive, Presto, Redshift and other systems. Delta Lake is deployed at thousands of Databricks customers that process exabytes of data per day, with the largest instances managing exabyte-scale datasets and billions of objects
    corecore